Abstract

In this paper, we consider the initial-boundary value problem for nonlinear Kirchhofftype equation utt −φ(‖∇u‖2)Δu−aΔut = b|u|β−2u, where a,b > 0 and β > 2 are constants, φ is a C1 -function such that φ(s) λ0 > 0 for all s 0 . Under suitable conditions on the initial data, we show the existence and uniqueness of global solution by means of the Galerkin method and the uniform decay rate of the energy by an integral inequality. Mathematics subject classification (2010): 35J05.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.