Abstract
We study the global existence and convergence rates of solutions to the three-dimensional compressible Navier-Stokes equations without heat conductivity, which is a hyperbolic-parabolic system. The pressure and velocity are dissipative because of the viscosity, whereas the entropy is non-dissipative due to the absence of heat conductivity. The global solutions are obtained by combining the local existence and a priori estimates if H 3 -norm of the initial perturbation around a constant state is small enough and its L 1 -norm is bounded. A priori decay-in-time estimates on the pressure and velocity are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.