Abstract
This study deals with the analysis of the Cauchy problem of a general class of nonlocal nonlinear equations modeling the bi-directional propagation of dispersive waves in various contexts. The nonlocal nature of the problem is reflected by two different elliptic pseudodifferential operators acting on linear and nonlinear functions of the dependent variable, respectively. The well-known doubly dispersive nonlinear wave equation that incorporates two types of dispersive effects originated from two different dispersion operators falls into the category studied here. The class of nonlocal nonlinear wave equations also covers a variety of well-known wave equations such as various forms of the Boussinesq equation. Local existence of solutions of the Cauchy problem with initial data in suitable Sobolev spaces is proven and the conditions for global existence and finite-time blow-up of solutions are established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Analysis: Theory, Methods & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.