Abstract

In this paper, we consider a quasilinearwave equation having nonlinear damping and source terms utt−Δut−∑i=1n∂∂xiσi(x, uxi)+β(x, utxi)+f(x, ut)=g(x, u) and obtained global existence and blow up results under certain polynomial growth conditions on the nonlinear functions σi, βi, (i = 1, 2, ..., n), f and g. We obtain global existence result for positive initial energy solution using Galerkin approximation procedure and nonexistence (blow up) result using the technique introduced by Georgiev and Todorova (1994) with little modification for our problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.