Abstract

In this paper, we present an analytical study, in the one space dimensional case, of the fluid dynamics system proposed in [3] to model the formation of biofilms. After showing the hyperbolicity of the system, we show that, in an open neighborhood of the physical parameters, the system is totally dissipative near its unique non-vanishing equilibrium point. Using this property, we are able to prove existence and uniqueness of global smooth solutions to the Cauchy problem on the whole line for small perturbations of this equilibrium point and the solutions are shown to converge exponentially in time at the equilibrium state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.