Abstract

This paper is concerned with the Boussinesq–Burgers system which models the propagation of bores by combing the dissipation, dispersion and nonlinearity. We establish the global existence and asymptotical behavior of classical solutions of the initial value boundary problem of the Boussinesq–Burgers system with the help of a Lyapunov functional and the technique of Moser iteration. Particularly we show that the solution converges to the unique constant stationary solution exponentially as time tends to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.