Abstract
Climate change has the potential to cause forest range shifts at a broad scale and consequently can alter crucial forest functions, including carbon sequestration. However, global-scale projections of future forest range shifts remain challenging because our knowledge of the physiological responses of plants to climatic stress is limited to particular species and is insufficient for wide-range projections, in addition to the uncertainties in the impacts of non-climatic factors, such as wildfire, wind, and insect outbreaks. To evaluate the vulnerability and resilience of forests to climate change, we developed a new empirical approach using climatic indices reflecting physiological stressors on plants. We calculated the global distributions of seven indices based on primary climatic stressors (drought, solar radiation, and temperature) at high resolution. We then modeled the relationship between the seven indices and global forest extent. We found two key stressors driving climate-induced forest range shifts on a global scale: low temperature under high radiation and drought. At high latitudes of the Northern Hemisphere, forest establishment became difficult when the mean temperature was less than approximately 7.2 °C in the highest radiation quarter. Forest sensitivity to drought was more pronounced at mid-latitudes. In areas where the humidity index (ratio of precipitation to potential evapotranspiration) was below 0.45, shrubland and grassland became more dominant than forests. Our results also suggested that the impacts of climate change on global forest range shifts will be geographically biased depending on the areas affected by the key climatic stressors. Potential forest gain was remarkable in boreal regions due to increasing temperature. Potential forest loss was remarkable in current tropical grassland and temperate forest/grassland ecoregions due to increasing drought. Our approach using stress-reflecting indices could improve our ability to detect the roles of climatic stressors on climate-induced forest range shifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.