Abstract
The class of linearly-implicit parallel two-step peer W-methods has been designed recently for efficient numerical solutions of stiff ordinary differential equations. Those schemes allow for parallelism across the method, that is an important feature for implementation on modern computational devices. Most importantly, all stage values of those methods possess the same properties in terms of stability and accuracy of numerical integration. This property results in the fact that no order reduction occurs when they are applied to very stiff problems. In this paper, we develop parallel local and global error estimation schemes that allow the numerical solution to be computed for a user-supplied accuracy requirement in automatic mode. An algorithm of such global error control and other technical particulars are also discussed here. Numerical examples confirm efficiency of the presented error estimation and stepsize control algorithm on a number of test problems with known exact solutions, including nonstiff, stiff, very stiff and large-scale differential equations. A comparison with the well-known stiff solver RODAS is also shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.