Abstract

Une methode d'elements finis de type Galerkin continue pour l'integration des problemes initiaux pour les equations aux derivees ordinaires est analysee. Des estimations d'erreur quasi-optimales de type a priori et a posteriori sont demontrees. Les resultats sont employes dans la construction d'une theorie rigoureuse et robuste pour le controle global d'erreur. La qualite du controle d'erreur est exposee dans une serie d'experiences numeriques

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.