Abstract
In temperate countries, influenza outbreaks are well correlated to seasonal changes in temperature and absolute humidity. However, tropical countries have much weaker annual climate cycles, and outbreaks show less seasonality and are more difficult to explain with environmental correlations. Here, we use convergent cross mapping, a robust test for causality that does not require correlation, to test alternative hypotheses about the global environmental drivers of influenza outbreaks from country-level epidemic time series. By moving beyond correlation, we show that despite the apparent differences in outbreak patterns between temperate and tropical countries, absolute humidity and, to a lesser extent, temperature drive influenza outbreaks globally. We also find a hypothesized U-shaped relationship between absolute humidity and influenza that is predicted by theory and experiment, but hitherto has not been documented at the population level. The balance between positive and negative effects of absolute humidity appears to be mediated by temperature, and the analysis reveals a key threshold around 75 °F. The results indicate a unified explanation for environmental drivers of influenza that applies globally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.