Abstract
Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro-fauna and the microbiome influence soil structure, and thus the soil hydraulic parameters and the soil water content signals we observe. Incorporating biological feedbacks into soil hydrological models is therefore important for understanding environmental change and its impacts on ecosystems. We anticipate that environmental change will accelerate and modify soil hydraulic function. Increasingly, we understand the vital role that soil moisture exerts on the carbon cycle and other environmental threats such as heatwaves, droughts and floods, wildfires, regional precipitation patterns, disease regulation and infrastructure stability, in addition to agricultural production. Biological feedbacks may result in changes to soil hydraulic function that could be irreversible, resulting in alternative stable states (ASS) of soil moisture. To explore this, we need models that consider all the major feedbacks between soil properties and soil-plant-faunal-microbial-atmospheric processes, which is something we currently do not have. Therefore, a new direction is required to incorporate a dynamic description of soil structure and hydraulic property evolution into soil-plant-atmosphere, or land surface, models that consider feedbacks from land use and climate drivers of change, so as to better model ecosystem dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.