Abstract

This paper is concerned with a system of variational wave equations which is the Euler–Lagrange equations of a variational principle arising in the theory of nematic liquid crystals and a few other physical contexts. The global existence of an energy-conservative weak solution to its Cauchy problem for initial data of finite energy is established by using the method of energy-dependent coordinates and the Young measure theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.