Abstract
Text summarization is one of the significant tasks of natural language processing, which automatically converts text into a summary. Some summarization systems, for short/long English, and short Chinese text, benefit from advances in the neural encoder-decoder model because of the availability of large datasets. However, the long Chinese text summarization research has been limited to datasets of a couple of hundred instances. This article aims to explore the long Chinese text summarization task. To begin with, we construct a first large-scale, long Chinese text summarization corpus, the Long Chinese Summarization of Police Inquiry Record Text (LCSPIRT). Based on this corpus, we propose a sequence-to-sequence (Seq2Seq) model that incorporates a global encoding process with an attention mechanism. Our model achieves a competitive result on the LCSPIRT corpus compared with several benchmark methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.