Abstract
AbstractPlasmaspheric hiss is a whistler‐mode emission that permeates the Earth's plasmasphere and is a significant driver of energetic electron losses through cyclotron resonant pitch angle scattering. The Electric and Magnetic Field Instrument Suite and Integrated Science instrument on the Van Allen Probes mission provides vastly improved measurements of the hiss wave environment including continuous measurements of the wave magnetic field cross‐spectral matrix and enhanced low‐frequency coverage. Here, we develop empirical models of hiss wave intensity using two years of Van Allen Probes data. First, we describe the construction of the hiss database. Then, we compare the hiss spectral distribution and integrated wave amplitude obtained from Van Allen Probes to those previously extracted from the Combined Release and Radiation Effects Satellite mission. Next, we develop a cubic regression model of the average hiss magnetic field intensity as a function of Kp, L, magnetic latitude, and magnetic local time. We use the full regression model to explore general trends in the data and use insights from the model to develop a simplified model of wave intensity for straightforward inclusion in quasi‐linear diffusion calculations of electron scattering rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.