Abstract
Making the connection between the function and structure of networked systems is one of the fundamental issues in complex systems and network science. Urban traffic flows are related to various problems in cities and can be represented as a network of local traffic flows. To identify an empirical relation between the function and network structure of urban traffic flows, we construct a time-varying traffic flow network of a megacity, Seoul, and analyze its global efficiency with a percolation-based approach. Comparing the real-world traffic flow network with its corresponding null-model network having a randomized structure, we show that the real-world network is less efficient than its null-model network during rush hour, yet more efficient during non-rush hour. We observe that in the real-world network, links with the highest betweenness tend to have lower quality during rush hour compared to links with lower betweenness, but higher quality during non-rush hour. Since the top betweenness links tend to be the bridges that connect the network together, their congestion has a stronger impact on the network's global efficiency. Our results suggest that the spatial structure of traffic flow networks is important to understand their function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.