Abstract

The post-transcriptional regulator CsrA regulates multiple unrelated processes such as central carbon metabolism, motility, biofilm formation and bacterial virulence in different bacteria. However, regulation by CsrA in enterohemorrhagic Escherichia coli (EHEC) O157:H7 is still largely unknown. In this study, we performed a detailed analysis of gene expression differences between the EHEC O157:H7 wild-type strain and a corresponding csrA::kan mutant using RNA-seq technology. Genes whose expression was affected by CsrA were identified and grouped into different clusters of orthologous group categories. Genes located in the locus of enterocyte effacement (LEE) pathogenicity island were significantly upregulated, whereas expression of flagella-related genes was significantly reduced in the csrA::kan mutant. Subsequent bacterial adherence and motility assays showed that inactivation of CsrA in EHEC O157:H7 resulted in a significant increase in bacterial adherence to host epithelial cells, with a concomitant loss of swimming motility on semi-solid agar plates. Furthermore, we also found that CsrA regulates genes not previously identified in other bacterial species, including genes encoding cytochrome oxidases and those required for nitrogen metabolism. Our results provide essential insight into the regulatory function of CsrA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call