Abstract

ABSTRACTMagnetic fields are an elemental part of the interstellar medium in galaxies. However, their impact on gas dynamics and star formation in galaxies remains controversial. We use a suite of global magnetohydrodynamic simulations of isolated disc galaxies to study the influence of magnetic fields on the diffuse and dense gas in the discs. We find that the magnetic field acts in multiple ways. Stronger magnetized discs fragment earlier due to the shorter growth time of the Parker instability. Due to the Parker instability in the magnetized discs, we also find cold ($T \lt 50\, \mathrm{K}$) and dense ($n\sim 10^3 {--}10^4\, \mathrm{cm}^{-3}$) gas several hundred pc above/below the mid-plane without any form of stellar feedback. In addition, magnetic fields change the fragmentation pattern. While in the hydrodynamic case, the disc breaks up into ring-like structures, magnetized discs show the formation of filamentary entities that extent both in the azimuthal and radial direction. These kpc scale filaments become magnetically (super-)critical very quickly and allow for the rapid formation of massive giant molecular clouds. Our simulations suggest that major differences in the behaviour of star formation – due to a varying magnetization – in galaxies could arise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.