Abstract

ABSTRACTIn this paper, an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination is proposed. In the model, we consider both the infection age of infected individuals and the biological age of Vibrio cholerae in the aquatic environment. Asymptotic smoothness is verified as a necessary argument. By analysing the characteristic equations, the local stability of disease-free and endemic steady states is established. By using Lyapunov functionals and LaSalle's invariance principle, it is proved that the global dynamics of the model can be completely determined by basic reproduction number. The study of optimal control helps us seek cost-effective solutions of time-dependent vaccination strategy against cholera outbreaks. Numerical simulations are carried out to illustrate the corresponding theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call