Abstract
In this study, we investigate a pine wilt transmission model with nonlinear incidence rates. The stability of the system is analyzed for disease-free and endemic equilibria. It is proved that the global dynamics are completely by the basic reproduction number R0. If R0 is less than one, the disease-free equilibrium is globally asymptotically stable, and in such a case, the endemic equilibrium does not exist. If R0 is greater than one, the disease persists and the unique endemic equilibrium is globally asymptotically stable.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.