Abstract

We consider a delayed reaction–diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson’s blowfly equation and the diffusive Mackey–Glass equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.