Abstract
For understanding the influence of user security awareness on the long-term spreading behavior of malware over mobile networks, in this paper, we intensively study the global dynamics of a novel network-based epidemic model with weakly-protected and strongly-protected susceptible nodes. Both analytical and numerical results show that the global dynamics of the model is completely governed by a threshold value. Specifically, we prove that when the value is lower than one, the malware-free equilibrium is globally asymptotically stable and mobile malware will disappear. When the value is greater than one, mobile malware will persist on the network, and in the meantime there exists a unique malware equilibrium which is globally asymptotically stable under certain conditions. The obtained results improve and enrich some known ones. Interestingly, increasing the recovery rate of infected nodes can result in the increase of strongly-protected susceptible nodes and the decrease of the threshold value. The study has valuable guiding significance in effectively controlling mobile malware spread.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.