Abstract
Consider the heterogeneity (e.g., heterogeneous social behaviour, heterogeneity due to different geography, contrasting contact patterns and different numbers of sexual partners etc.) of host population, in this paper, the authors propose an infection age multi-group SEIR epidemic model. The model system also incorporates the feedback variables, where the infectivity of infected individuals may depend on the infection age. In the direction of mathematical analysis of model, the basic reproduction number R0 has been computed. The global stability of disease-free equilibrium and endemic equilibrium have been established in the term of R0. More precisely, for R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable and for R0 > 1, they establish global stability of endemic equilibrium using some graph theoretic techniques to Lyapunov function method. By considering a numerical example, they investigate the effects of infection age and feedback on the prevalence of the disease. Their result shows that feedback parameters have different and even opposite effects on different groups. However, by choosing an appropriate value of feedback parameters, the disease could be eradicated or maintained at endemic level. Besides, the infection age of infected individuals may also change the behaviour of the disease, global stable to damped oscillations or damped oscillations to global stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.