Abstract
In this paper, we investigate a class of multi-group epidemic models allowing heterogeneity of the host population and that has taken into consideration with general relapse distribution and nonlinear incidence rate. We establish that the global dynamics are completely determined by the basic reproduction number R0. The proofs of the main results utilize the persistence theory in dynamical systems, Lyapunov functionals and a subtle grouping technique in estimating the derivatives of Lyapunov functionals guided by graph-theoretical approach. Biologically, the disease (with any initial inoculation) will persist in all groups of the population and will eventually settle at a constant level in each group. Furthermore, our results demonstrate that heterogeneity and nonlinear incidence rate do not alter the dynamical behaviors of the basic SIR model. On the other hand, the global dynamics exclude the existence of Hopf bifurcation leading to sustained oscillatory solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.