Abstract

Asymptotic properties of a malaria model with partial immunity and two discrete time delays are investigated. The time delays represent latent period and partial immunity period in the human population. The results obtained show that the global dynamics are completely determined by the values of the reproductive number. Using a suitable Lyapunov function the endemic equilibrium is shown to be globally asymptotically stable under certain conditions. Moreover, we show that when the partially immune humans are assumed to be noninfectious, the disease is uniformly persistent if the corresponding reproductive number is greater than unity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.