Abstract

Equations with non-local dispersal have been widely used as models in biology. In this paper we focus on logistic models with non-local dispersal, for both single and two competing species. We show the global convergence of the unique positive steady state for the single equation and derive various properties of the positive steady state associated with the dispersal rate. We investigate the effects of dispersal rates and inter-specific competition coefficients in a shadow system for a two-species competition model and completely determine the global dynamics of the system. Our results illustrate that the effect of dispersal in spatially heterogeneous environments can be quite different from that in homogeneous environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.