Abstract

We compare two different N-body models simulating elliptical galaxies. Namely, the first model is a non-rotating triaxial N-body equilibrium model with smooth center, called SC model. The second model, called CM model, is derived from the SC by inserting a central mass in it, so that all possible differences between the two models are due to the effect of the central mass. The central mass is assumed to be mainly due to a massive central black hole of mass about 1% of the total mass of the galaxy. By using the fundamental frequency analysis, the two systems are thoroughly investigated as regards the types of orbits described either by test particles, or by the real particles of the systems at all the energy levels. A comparison between the orbits of test particles and the orbits of real particles at various energy levels is made on the rotation number plane. We find that extensive stable regions of phase space, detected by test particles remain empty, i.e. these regions are not occupied by real particles, while many real particles move in unstable regions of phase space describing chaotic orbits. We run self-consistently the two models for more than a Hubble time. During this run, in spite of the noise due to small variations of the potential, the SC model maintains (within a small uncertainly) the number of particles moving on orbits of each particular type. In contrast, the CM model is unstable, due to the large amount of mass in chaotic motion caused by the central mass. This system undergoes a secular evolution towards an equilibrium state. During this evolution it is gradually self-organized by converting chaotic orbits to ordered orbits mainly of the short axis tube type approaching an oblate spheroidal equilibrium. This is clearly demonstrated in terms of the fundamental frequencies of the orbits on the rotation number plane and the time evolution of the triaxiality index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call