Abstract

AbstractAimMicroorganisms carrying pmoA and nosZ genes are major drivers of methane and nitrous oxide fluxes from soils. However, most studies on these organisms have been conducted in mesic ecosystems; therefore, little is known about the factors driving their distribution in drylands, the largest biome on Earth. We conducted a global survey to evaluate the role of climate‐ and soil‐related variables as predictors of the richness, abundance and community structure of bacteria carrying pmoA and nosZ genes.LocationEighty dryland ecosystems distributed worldwide.Time periodFrom February 2006 to December 2011.Major taxa studiedMethanotrophic (carrying the pmoA gene) and denitrifiying (carrying the nosZ gene) bacteria.MethodsWe used data from a field survey and structural equation modelling to evaluate the direct and indirect effects of climatic (aridity, rainfall seasonality and mean annual temperature) and soil (organic carbon, pH and texture) variables on the total abundance, richness and community structure of microorganisms carrying pmoA and nosZ genes.ResultsTaxa related to Methylococcus capsulatus or Methylocapsa sp., often associated with mesic environments, were common in global drylands. The abundance and richness of methanotrophs were not associated with climate or soil properties. However, mean annual temperature, rainfall seasonality, organic C, pH and sand content were highly correlated with their community structure. Aridity and soil variables, such as sand content and pH, were correlated with the abundance, community structure and richness of the nosZ bacterial community.Main conclusionsOur study provides new insights into the drivers of the abundance, richness and community structure of soil microorganisms carrying pmoA and nosZ genes in drylands worldwide. We highlight how ongoing climate change will alter the structure of soil microorganisms, which might affect the net CH4 exchange and will probably reduce the capacity of dryland soils to carry out the final step of denitrification, favouring net N2O emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.