Abstract

This article is devoted to the global dissipativity of inertial neural networks with proportional delay. A novel generalized Halanay inequality which involves proportional delay is established. By constructing a new generalized Halanay inequality, several new explicit delay-independent conditions are derived in terms of linear matrix inequalities to ensure the global dissipativity of the considered system. Moreover, a new differential delay inequality which involves unbounded time-varying delay is considered. Due to the proportional delay is one type of unbounded time-varying delays, new analysis techniques can effectively avoid the difficulties caused by proportional delay by applying a new differential delay inequality. Especially, several novel delay-dependent sufficient conditions are obtained to guarantee the global dissipativity of the considered system. Finally, two simulations examples are provided to illustrate the validity of the proposed theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.