Abstract

This article aimed to investigate the problem of global dissipativity of Fuzzy Bidirectional Associative Memory Neural Networks (FBAMNNs- for short) with proportional delays. Via Lyapunov Functionals (LFs- for short) and Linear Matrix Inequality (LMI- for short) approach, we obtained new sufficient conditions to guarantee the global dissipativity and global exponential dissipativity of the proposed model. In addition, two different types of activation functions are considered, including general bounded and Lipschitz-type activation functions. Moreover, the globally attractive and globally exponentially attractive sets are presented. Lastly, two numerical examples are given to illustrate the effectiveness of the developed results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.