Abstract

MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call