Abstract
We propose in this paper novel global descent methods for unconstrained global optimization problems to attain the global optimality by carrying out a series of local minimization. More specifically, the solution framework consists of a two-phase cycle of local minimization: the first phase implements local search of the original objective function, while the second phase assures a global descent of the original objective function in the steepest descent direction of a (quasi) global descent function. The key element of global descent methods is the construction of the (quasi) global descent functions which possess prominent features in guaranteeing a global descent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.