Abstract

Existing Global Data Computation (GDC) protocols for asynchronous systems are round-based algorithms designed for fully connected networks. In this paper, we discuss GDC in asynchronous chordal rings, a non-fully connected network. The virtual links approach to solve the consensus problem may be applied to GDC for non-fully connected networks, but it incurs high message overhead. To reduce the overhead, we propose a new non-round-based GDC protocol for asynchronous chordal rings with perfect failure detectors. The main advantage of the protocol is that there is no notion of rounds. Every process creates two messages initially, with one message traversing in a clockwise direction and visiting each and every process in the chordal ring. The second message traverses in a counterclockwise direction. When there is direct connection between two processes, a message is sent directly. Otherwise, the message is sent via virtual links. When the two messages return, the process decides according to the information maintained by the two messages. The perfect failure detector of a process need only detect the crash of neighboring processes, and the crash information is disseminated to all other processes. Analysis and comparison with two virtual links approaches show that our protocol reduces message complexity significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.