Abstract
We study in detail the notion of global curvature defined on rectifiable closed curves, a concept which has been successfully applied in existence and regularity investigations regarding elastic self-contact problems in nonlinear elasticity. A bound on this purely geometric quantity serves as an excluded volume constraint to prevent selfintersections of slender elastic bodies modeled as elastic rods. Moreover, a finite global curvature characterizes simple closed curv es, whose arc length parameterizations possess a Lipschitz continuous tangent field. The investigation of local and non-local properties of global curvature motivates, in particular, an extended definition of local curvature at any point of a rectifiable loop. Finally we show how a bound on global curvature can be used to define and control topological constraints such as a given knot type for closed loops or a prescribed linking number for closed framed curves, suitable to describe, e.g., supercoiling phen omena of biomolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.