Abstract

Many different physical systems, e.g. super-coiled DNA molecules, have been successfully modelled as elastic curves, ribbons or rods. We will describe all such systems as framed curves, and will consider problems in which a three dimensional framed curve has an associated energy that is to be minimized subject to the constraint of there being no self-intersection. For closed curves the knot type may therefore be specified a priori. Depending on the precise form of the energy and imposed boundary conditions, local minima of both open and closed framed curves often appear to involve regions of self-contact, that is, regions in which points that are distant along the curve are close in space. While this phenomenon of self-contact is familiar through every day experience with string, rope and wire, the idea is surprisingly difficult to define in a way that is simultaneously physically reasonable, mathematically precise, and analytically tractable. Here we use the notion of global radius of curvature of a space curve in a new formulation of the self-contact constraint, and exploit our formulation to derive existence results for minimizers, in the presence of self-contact, of a range of elastic energies that define various framed curve models. As a special case we establish the existence of ideal shapes of knots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.