Abstract
The conjugate gradient method (CG) is one of the most rapidly expanding and efficient ways of solving unconstrained minimization problems. Recently, there has been a lot of effort put into extending the CG approach to solve monotone nonlinear equations. In this paper, we describe a variation of the CG method for solving constrained monotone nonlinear equations. The approach has a sufficient descent property, and its global convergence has been demonstrated with the help of some reasonable assumptions. Two sets of numerical tests were run to demonstrate the proposed method’s superior performance when compared to other methods. The initial experiment aimed to solve nonlinear equations with constraints, while in the second experiment, the method was applied to sparse signal reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.