Abstract

We focus on the problem of minimizing the sum of smooth component functions (where the sum is strongly convex) and a nonsmooth convex function, which arises in regularized empirical risk minimization in machine learning and distributed constrained optimization in wireless sensor networks and smart grids. We consider solving this problem using the proximal incremental aggregated gradient (PIAG) method, which at each iteration moves along an aggregated gradient (formed by incrementally updating gradients of component functions according to a deterministic order) and takes a proximal step with respect to the nonsmooth function. While the convergence properties of this method with randomized orders (in updating gradients of component functions) have been investigated, this paper, to the best of our knowledge, is the first study that establishes the convergence rate properties of the PIAG method for any deterministic order. In particular, we show that the PIAG algorithm is globally convergent with a linear rat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.