Abstract
The alternating direction method of multipliers (ADMM) has been successfully applied to solve structured convex optimization problems due to its superior practical performance. The convergence properties of the 2-block ADMM have been studied extensively in the literature. Specifically, it has been proven that the 2-block ADMM globally converges for any penalty parameter $\gamma>0$. In this sense, the 2-block ADMM allows the parameter to be free, i.e., there is no need to restrict the value for the parameter when implementing this algorithm in order to ensure convergence. However, for the 3-block ADMM, Chen \etal \cite{Chen-admm-failure-2013} recently constructed a counter-example showing that it can diverge if no further condition is imposed. The existing results on studying further sufficient conditions on guaranteeing the convergence of the 3-block ADMM usually require $\gamma$ to be smaller than a certain bound, which is usually either difficult to compute or too small to make it a practical algorithm. In this paper, we show that the 3-block ADMM still globally converges with any penalty parameter $\gamma>0$ if the third function $f_3$ in the objective is smooth and strongly convex, and its condition number is in $[1,1.0798)$, besides some other mild conditions. This requirement covers an important class of problems to be called regularized least squares decomposition (RLSD) in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.