Abstract

A class of interior-point trust-region algorithms for infinite-dimensional nonlinear optimization subject to pointwise bounds in L p-Banach spaces, $2\le p\le\infty$, is formulated and analyzed. The problem formulation is motivated by optimal control problems with L p-controls and pointwise control constraints. The interior-point trust-region algorithms are generalizations of those recently introduced by Coleman and Li [SIAM J. Optim., 6 (1996), pp. 418--445] for finite-dimensional problems. Many of the generalizations derived in this paper are also important in the finite-dimensional context. All first- and second-order global convergence results known for trust-region methods in the finite-dimensional setting are extended to the infinite-dimensional framework of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.