Abstract
This paper establishes global convergence and provides global bounds of the rate of convergence for the Heavy-ball method for convex optimization. When the objective function has Lipschitz-continuous gradient, we show that the Cesáro average of the iterates converges to the optimum at a rate of O(1/k) where k is the number of iterations. When the objective function is also strongly convex, we prove that the Heavy-ball iterates converge linearly to the unique optimum. Numerical examples validate our theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.