Abstract

We consider smooth solutions of the Euler‐Poisson system for ion dynamics in which the electron density is replaced by a Boltzmann relation. The system arises in the modeling of plasmas, where appear two small parameters, the relaxation time and the Debye length. When the initial data are sufficiently close to constant equilibrium states, we prove the convergence of the system for all time, as each of the parameters goes to zero. The limit systems are drift‐diffusion equations and compressible Euler equations. The proof is based on uniform energy estimates and compactness arguments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.