Abstract

In this paper, we investigate the dynamical behavior of a class of delayed neural networks with discontinuous neuron activations and general mixed time-delays involving both time-varying delays and distributed delays. Due to the presence of time-varying delays and distributed delays, the step-by-step construction of local solutions cannot be applied. This difficulty can be overcome by constructing a sequence of solutions to delayed dynamical systems with high-slope activations and show that this sequence converges to a desired Filippov solution of the discontinuous delayed neural networks. We then derive two sets of sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of linear matrix inequalities (LMIs) and M-matrix properties (equivalently, some diagonally dominant conditions), respectively. Convergence behavior of both the neuron state and the neuron output are discussed. The obtained results extend previous work on global stability of delayed neural networks with Lipschitz continuous neuron activations, and neural networks with discontinuous neuron activations and only constant delays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.