Abstract

In his recent research, M. K. Tam (2018) considered a framework for the analysis of iterative algorithms which can be described in terms of a structured set-valued operator. At each point in the ambient space, the value of the operator can be expressed as a finite union of values of single-valued para-contracting operators. He showed that the associated fixed point iteration is locally convergent around strong fixed points. In the present paper we generalize the result of Tam and show the global convergence of his algorithm for an arbitrary starting point. An analogous result is also proven for the Krasnosel’ski–Mann iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.