Abstract

The present article deals with the effect of convexity in the study of the well-known Whittaker iterative method, because an iterative method converges to a unique solution \(t^*\) of the nonlinear equation \(\psi(t)=0\) faster when the function's convexity is smaller. Indeed, fractional iterative methods are a simple way to learn more about the dynamic properties of iterative methods, i.e., for an initial guess, the sequence generated by the iterative method converges to a fixed point or diverges. Often, for a complex root search of nonlinear equations, the selective real initial guess fails to converge, which can be overcome by the fractional iterative methods. So, we have studied a Caputo fractional double convex acceleration Whittaker's method (CFDCAWM) of order at least (\(1+2\zeta\)) and its global convergence in broad ways. Also, the faster convergent CFDCAWM method provides better results than the existing Caputo fractional Newton method (CFNM), which has (\(1+\zeta\)) order of convergence. Moreover, we have applied both fractional methods to solve the nonlinear equations that arise from different real-life problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.