Abstract

Globally, ruminant production systems used to synthesize meat and milk differ tremendously in terms of their efficiency, productivity, and environmental impacts. Regardless of this variability, milk has been repeatedly identified as an essential source of nutrients for humans. The objective of this work was to characterize global contributions of fluid milk to human food and nutrient supplies, greenhouse gas emissions, and water withdrawal. Data were leveraged from the United Nations Food and Agriculture Organization to estimate global supplies of agricultural products. Trade of agricultural products and waste of those products, along with use of human food for livestock feed were accounted for before estimating human nutrient supplies. The contributions of milk to human-edible nutrient supplies were then enumerated in terms of their proportion of total nutrients supplied by the agricultural system and in terms of the human population's requirement for that nutrient. We identified that fluid milk provides over 10% of consumable supplies of vitamin B12, vitamin A, riboflavin, and calcium available for humans globally. In terms of human nutrient requirements, milk provides sufficient vitamin B12 to meet the needs of over 60% of the global population, riboflavin to satisfy 50% of the population, and calcium and phosphorus for over 35% of the population. Compared with other foods, milk ranked among the highest in terms of nutrient-to-calorie ratio for numerous amino acids, phosphorus, calcium, and riboflavin. Conditional dependencies were identified between greenhouse gas emissions and ruminant milk and meat, but not between water withdrawal and milk production. When evaluating the trade-offs in nutrient use versus nutrient provision for producing milk or producing all ruminant products, the production of ruminants worldwide was associated with both net increases and net decreases of several key nutrients. Continued work focusing on strategies to reduce the environmental impact of milk production will improve the utility of milk for feeding the growing global population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call