Abstract

Global plate motion models provide a spatial and temporal framework for geological data and have been effective tools for exploring processes occurring at the earth's surface. However, published models either have insufficient temporal coverage or fail to treat tectonic plates in a self-consistent manner. They usually consider the motions of selected features attached to tectonic plates, such as continents, but generally do not explicitly account for the continuous evolution of plate boundaries through time. In order to explore the coupling between the surface and mantle, plate models are required that extend over at least a few hundred million years and treat plates as dynamic features with dynamically evolving plate boundaries. We have constructed a new type of global plate motion model consisting of a set of continuously-closing topological plate polygons with associated plate boundaries and plate velocities since the break-up of the supercontinent Pangea. Our model is underpinned by plate motions derived from reconstructing the seafloor-spreading history of the ocean basins and motions of the continents and utilizes a hybrid absolute reference frame, based on a moving hotspot model for the last 100Ma, and a true-polar wander corrected paleomagnetic model for 200 to 100Ma. Detailed regional geological and geophysical observations constrain plate boundary inception or cessation, and time-dependent geometry. Although our plate model is primarily designed as a reference model for a new generation of geodynamic studies by providing the surface boundary conditions for the deep earth, it is also useful for studies in disparate fields when a framework is needed for analyzing and interpreting spatio-temporal data.

Highlights

  • Late Mesozoic rifting at the flanks of the Dzhagda segment of the Mongolia‐Okhotsk collisional orogen: global and regional aspects

  • Kirillova: Late Mesozoic rifting at the flanks of the Dzhagda segment of the Mongolia-Okhotsk collisional orogen

  • New data on geochronology of magmatic assemblages in the Khingan-Olonoy volcanic zone (Russian Far East)

Read more

Summary

ВВЕДЕНИЕ

Роль рифтогенеза в формировании современной структуры Монголо‐Охотского коллизионного оро‐ гена (МОКО) чрезвычайно велика. Главная фаза сжатия в МОКО имела место в средней юре [Kirillova, Turbin, 1979]. В то же время в ранней‐средней юре, подобно смыкающимся с за‐ пада на восток ножницам, на континенте закрылись субширотные Монголо‐Охотский и Палеотетиче‐ ский проливы вдоль Монголо‐Охотской и Циньлин‐ Даби сутур соответственно [Kirillova, 2008; Parfenov et al, 2003; Maruyama et al, 1997; Metcalfe, 2013; Ren et al, 2002; Seton et al, 2012]. 1. Схема тектонического районирования Джагдинского звена Монголо‐Охотского складчатого орогена (МОКО) [Kirillova, Turbin, 1979]. В наиболее изученном Джагдинском звене этого орогена [Kirillova, Turbin, 1979] выделяется три структурных элемента: складчатая структура в центре, Норско‐Селемджинский рифтогенный про‐ гиб на юге и Зейско‐Удский – на севере, выполнен‐ ные слабодислоцированными и субгоризонталь‐ ными грубообломочными и вулканогенными обра‐ зованиями позднеюрского–раннемелового возрас‐ та Оба бассейна асимметричны: крутой южный борт, где мощность познеюрско‐меловых вулканогенно‐терригенных осадков достигает 4 км, и пологий северный

УДСКИЙ ОСАДОЧНЫЙ БАССЕЙН
НОРСКО‐СЕЛЕМДЖИНСКИЙ РИФТОГЕННЫЙ
ЗАКЛЮЧЕНИЕ
БЛАГОДАРНОСТИ
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.