Abstract

Although there have been recent advances in Siamese-network-based visual tracking methods where they show high performance metrics on numerous large-scale visual tracking benchmarks, persistent challenges regarding the distractor objects with similar appearances to the target object still remain. To address these aforementioned issues, we propose a novel global context attention module for visual tracking, where the proposed module can extract and summarize the holistic global scene information to modulate the target embedding for improved discriminability and robustness. Our global context attention module receives a global feature correlation map to elicit the contextual information from a given scene and generates the channel and spatial attention weights to modulate the target embedding to focus on the relevant feature channels and spatial parts of the target object. Our proposed tracking algorithm is tested on large-scale visual tracking datasets, where we show improved performance compared to the baseline tracking algorithm while achieving competitive performance with real-time speed. Additional ablation experiments also validate the effectiveness of the proposed module, where our tracking algorithm shows improvements in various challenging attributes of visual tracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.