Abstract

<p style='text-indent:20px;'>In present paper, we deal with the behavior of a solution beyond the occurrence of wave breaking for a modified periodic Coupled Camassa-Holm system. By introducing a new set of independent and dependent variables, which resolve all singularities due to possible wave breaking, this evolution system is rewritten as a closed semilinear system. The local existence of the semilinear system is obtained as fixed points of a contractive transformation. Moreover, this formulation allows us to continue the solution after wave breaking, and gives a global conservative solution where the energy is conserved for almost all times. Returning to the original variables. We finally obtain a semigroup of global conservative solutions, which depend continuously on the initial data. Additionally, our results repair some gaps in the pervious work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.