Abstract

Density and power scan experiments have been carried out at various magnetic field strengths on the Large Helical Device (LHD), to investigate the temperature and magnetic field dependences of the thermal diffusivity. In the moderate density regime, the thermal diffusivity shows gyro-Bohm-like parameter dependences. In the high-density and low-temperature regime, on the other hand, the thermal diffusivity increases with the square root of the local electron temperature and decreases with a 1.2 power of the magnetic field strength. The turning point temperature where the weak temperature dependence changes to the gyro-Bohm type is also found to increase with a 0.8 power of the magnetic field strength. Based on the experimental results, dimensionally correct scalings for the energy confinement time, τE, and the plasma stored energy for the high-density LHD plasmas have been derived. Compared with the gyro-Bohm model (τE ∝ (n/P)3/5, where n and P denote the density and the heating power, respectively) and the international stellarator scaling 1995 (τE ∝ n0.51P−0.59), our scaling has a weaker positive dependence on the density together with the mitigated power degradation as τE ∝ (n/P)1/3, owing to the weak temperature dependence of the thermal diffusivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.