Abstract

We investigate a global complexity bound of the Levenberg–Marquardt Method (LMM) for nonsmooth equations. The global complexity bound is an upper bound to the number of iterations required to get an approximate solution that satisfies a certain condition. We give sufficient conditions under which the bound of the LMM for nonsmooth equations is the same as smooth cases. We also show that it can be reduced under some regularity assumption. Furthermore, by applying these results to nonsmooth equations equivalent to the nonlinear complementarity problem (NCP), we get global complexity bounds for the NCP. In particular, we give a reasonable bound when the mapping involved in the NCP is a uniformly P-function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.