Abstract
Speciated volatile organic compound (VOC) and carbon monoxide (CO) measurements from the Marylebone Road site in central London from 1998 through 2008 are presented. Long-term trends show statistically significant decreases for all the VOCs considered, ranging from −3% to −26% per year. Carbon monoxide decreased by −12% per year over the measurement period. The VOC trends observed at the kerbside site in London showed greater rates of decline relative to trends from monitoring sites in rural England (Harwell) and a remote high-altitude site (Hohenpeissenberg), which showed decreases for individual VOCs from −2% to −13% per year. Over the same 1998 through 2008 period VOC to CO ratios for London remained steady, an indication that emissions reduction measures affected the measured compounds equally. Relative trends comparing VOC to CO ratios between Marylebone Road and Hohenpeissenberg showed greater similarities than absolute trends, indicating that emissions reductions measures in urban areas are reflected by regional background locations. A comparison of VOC mixing ratios and VOC to CO ratios was undertaken for London and other global cities. Carbon monoxide and VOCs (alkanes greater than C 5 , alkenes, and aromatics) were found to be strongly correlated (>0.8) in the Annex I countries, whereas only ethene and ethyne were strongly correlated with CO in the non-Annex I countries. The correlation results indicate significant emissions from traffic-related sources in Annex I countries, and a much larger influence of other sources, such as industry and LPG-related sources in non-Annex I countries. Yearly benzene to ethyne ratios for London from 2000 to 2008 ranged from 0.17 to 0.29 and compared well with previous results from US cities and three global megacities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.